VIth International Conference on Mammoths and their Relatives
GREVENA SIATISTA GREECE 2014

ABSTRACT BOOK

Editors:
Dimitris S. KOSTOPOULOS, Evangelos VLACHOS, and Evangelia TSOUKALA

THESSALONIKI, MAY 2014
Early stages of anancine evolution in Europe are still insufficiently known. Finds from various Turolian European localities seem to indicate the presence of one or more anancine species, distinct from Pliocene Anancus arvernensis (Tassy, 1986; Metz-Muller, 2000; Markov, 2008) but the available material is rare and consists mostly of isolated molars.

Recent excavations at the late Turolian (MN13) locality Staniantsi, western Bulgaria, yielded a rich vertebrate fauna (Böhme et al., 2013), including an anancine mandible with both third molars (Fig. 1).

While molar and mandibular morphology permit allocating the specimen to Anancus, it displays some primitive characters such as weak anancoidy. Molar lophids are visibly compressed antero-posteriorly, and cross-contacts are underdeveloped. The somewhat primitive morphology of the Staniantsi specimen seems to support the allocation of the European Turolian anancines to a species distinct from A. arvernensis (the proper name for which seems to be A. lehmanni, see Markov, 2008). Yet, morphology of the different finds varies, and the Turolian material in its entirety displays mixed primitive and derived characters: a situation closely resembling the observation made by Saegusa & Hlusko (2007) for late Miocene African anancines; thus, allocating all European Turolian anancines to A. lehmanni looks logical but can only be tentative. Mechanism of replacement of the Turolian form by A. arvernensis by the beginning of the Pliocene is also far from clear. Finds such as the one from Staniantsi – well preserved mandible of latest Turolian age – might prove valuable in both aspects.

References


markov@nmnhs.com


Fig. 1. Anancus sp., Staniantsi, Bulgaria. Scale bar equals 10 cm.