VIth International Conference
on Mammoths and their Relatives
GREVENA SIATISTA GREECE 2014

ABSTRACT BOOK

Editors:
Dimitris S. KOSTOPOULOS, Evangelos VLACHOS, and Evangelia TSOUKALA

THESSALONIKI, MAY 2014
The effect of insular dwarfism on dietary niche occupation in mammoths: what were the pygmy mammoths from Santa Rosa Island of California eating?

Gina SEMPREBON, Florent RIVALS, Julia FAHLKE, William SANDERS, Adrian LISTER, and Ursula GÖHLICH

Tooth wear studies have been used extensively to elucidate paleodietary and environmental trends at both local and global levels. Proxies such as microwear studies have been shown to be particularly adept at demonstrating dietary behavioral differences in taxa with similar or even virtually identical gross tooth morphologies (Semprebon et al. 2004a; Semprebon & Rivals 2007; Rivals et al. 2007). Despite the recent flurry of studies aimed at reconstructing ungulate diets using microwear, relatively few studies have focused on proboscidean microwear.

We used dental microwear analysis to study a large sample of pygmy mammoths (*Mammuthus exilis*) from Santa Rosa Island of California and compared our results to those of extant ungulates, proboscideans, and mainland fossil mammoths and mastodons from North America and Europe. Microwear features such as pits and scratches were identified and quantified using a stereomicroscope in a square area of 0.16 mm2 and an ocular reticle at 35 times magnification, and large pits, gouges, and scratch textures were assessed via differential light refraction.
as detailed in Solounias and Semprebon (2002) and Semprebon et al. (2004b). The analysis was made from the central portion of the central enamel bands of the occlusal surface (Fig. 1A).

Results are presented in Figures 1B-D. Fig. 1B depicts raw scratch versus pit results for extant elephants compared to average scratch versus pit results for extant ungulate taxa of known dietary behavior whereas Figure 1C shows raw scratch versus pit results obtained on *M. exilis*. The raw scratch distribution of *M. exilis* is skewed more toward the low scratch browsing range much like that of *Loxodonta cyclotis*, indicating a more homogenous dietary regime than that found in *L. africana* and *E. maximus* which have broader scratch distributions more typical of modern mixed feeders. Fig. 1D shows average scratch versus pit results of *M. exilis* compared to extant ungulates (convex hulls) and living and fossil proboscidean average values. Fig. 1D clearly shows that *M. exilis* has average scratch and pit results nearly identical to the forest elephant (*Loxodonta cyclotis*) and distinctive from more mixed feeding forms (*L. africana* and *E. maximus*), suggesting that bark was an important dietary item.

Prior work (Rivals et al., 2012) has shown that *Mammuthus* species often show dietary plasticity with browsing, grazing, and mixed feeding patterns observed. Results here clearly show a shift in mammoth dietary niche occupation as mainland mammoths colonized the Channel Islands. Our results suggest that *M. exilis* narrowed its dietary breadth from that of its mainland ancestor (*M. columbi*) and became more specialized on browsing on leaves and twigs rather than the more typical mammoth pattern of switching between browse and grass. These results are consistent with the Pleistocene vegetation history of Santa Rosa Island whereby extensive coastal conifer forests were available during the last glacial as well as *Pinus* stands, and sage scrub as the climate warmed (Anderson et al., 2010).

References

References

References

